Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Diagnostics (Basel) ; 12(11)2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2115962

ABSTRACT

We developed and standardized an efficient and cost-effective in-house RT-PCR method to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluated sensitivity, specificity, and other statistical parameters by different RT-qPCR methods including triplex, duplex, and simplex assays adapted from the initial World Health Organization- (WHO) recommended protocol. This protocol included the identification of the E envelope gene (E gene; specific to the Sarvecovirus genus), RdRp gene of the RNA-dependent RNA polymerase (specific for SARS-CoV-2), and RNase P gene as endogenous control. The detection limit of the E and the RdRp genes were 3.8 copies and 33.8 copies per 1 µL of RNA, respectively, in both triplex and duplex reactions. The sensitivity for the RdRp gene in the triplex and duplex RT-qPCR tests were 98.3% and 83.1%, respectively. We showed a decrease in sensitivity for the RdRp gene by 60% when the E gene acquired Ct values > 31 in the diagnostic tests. This is associated with the specific detection limit of each gene and possible interferences in the protocol. Hence, developing efficient and cost-effective methodologies that can be adapted to various health emergency scenarios is important, especially in developing countries or settings where resources are limited.

2.
Saudi J Kidney Dis Transpl ; 32(5): 1356-1364, 2021.
Article in English | MEDLINE | ID: covidwho-1835076

ABSTRACT

This paper describes the main characteristics of coronavirus diseases 2019 (COVID-19) patients suffering from acute kidney injury (AKI) assisted at a high complexity clinic in Barranquilla, Colombia. The patients included in this study (n = 48) were those with a positive diagnosis of COVID-19 confirmed by polymerase chain reaction detection of severe acute respiratory syndrome coronavirus 2, who had developed AKI during their hospital stay. Serum and urine parameters, as well as patient's viral load and clinical frailty scale (CFS) were recorded. A statistical analysis of the recorded parameters, such as comparisons, and correlations between variables of interest, were explored. The prevalence of COVID-19 induced AKI was 41%, being the majority of them classified as AKI network classification 3, with a renal replacement therapy requirement of 29%, and an associated mortality of 73%. AKI patients' mortality showed a significant positive correlation (33%) with patients' CFS score but not with their viral load. COVID-19 induced AKI significantly correlated with patients' frailty status but not to their viral load.


Subject(s)
Acute Kidney Injury , COVID-19 , Fatigue Syndrome, Chronic , Frailty , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/therapy , COVID-19/complications , Female , Frailty/diagnosis , Frailty/epidemiology , Humans , Male , Retrospective Studies , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL